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Abstract-By considering three-dimensional elasticity without any initial assumptions. the authors
obtain the state equations for an orthotropic body. A series solution for a simply supported
rectangular thick plate with arbitrary ratio between thickness and width under any given load is
presented. Every fundamental equation of three-dimensional elasticity can be exactly satisfied and
all the nine elastic constants can also be taken into account by the present method. Numerical
results are obtained and compared with those of Reissner's and Ambartsumyan's theories and some
references.

INTRODUCTION

The governing equation of thick plates which was first established by Reissner (1945) is
based on the assumptions that the additional component p(z) of displacements u and t' and
compressive deformation B(z) are cubic functions across the thickness. After Reissner's
work Hencky (1947) and Vlasov (1957) assumed that p(z) is a linear and a cubic function.
respectively. Mindlin (1951) proposed an improved theory by assuming p(z) to be a sine
function. However, the effect of the compressive deformation B(z) is neglected in the above
theories.

Among the theories of thick plates, Ambartsumyan's theory (Ambartsumyan, 1969),
which introduces a given quadratic function to account for the variation of shearing stress
across the thickness, seems to be more attractive to scholars.

All these theories are similar in that the deflection w has no relationship to coordinate
z. The relation, however, has been considered by some higher-order theories, e.g. Lo et al.
(1977).

With no initial assumptions regarding stress and deformation models, Vlasov proposed
the Method of Initial Function (MIF) (Vlasov, 1957). Sundara Raja Iyengar applied this
method to investigate the bending problem of a rectangular isotropic plate (Sundara Raja
Iyengar et al., 1974). Bahar, Das and Rao introduced the state space and matrix method
to the MIF (Bahar, 1975; Das and Rao, 1977). For an isotropic body, the solutions of the
initial functions can be obtained in a closed form by using the Cayley-Hamilton theorem.
However, because the final equation is a transcendental one and finite terms ofthe Maclaurin
series have to be used to solve it, the closed form is only a theoretical formulation. For an
anisotropic body, it is very difficult to obtain the eigenvalues of a matrix with differential
operators. Therefore, the solutions of the initial functions have to be expressed in the form
of a Maclaurin series. Taking several terms of the series, all the physical quantities, in fact,
appear to be polynomials of z in the solving process (Sundara Raja Iyengar and Pandya,
1983).

Considering three-dimensional elasticity and without any initial assumptions, the
authors obtain the state equation for an orthotropic body. According to the boundary
conditions of simply supported rectangular thick plates, all the physical quantities can be
solved directly from the state equation. It is not necessary to deal with infinite-order partial
differential equations since the state equation has not been expressed in the form of a
Maclaurin series. Furthermore, the inconsistency among equations due to the cutting-error
is avoided. The exact solutions for the flexure of static and dynamic plates with arbitrary
elastic constants and the ratio between the thickness and width can easily be obtained.
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FORMULATION OF THE STATE EQUATION

For an orthotropic body whose principal elastic directions coincide with the coordinate
axes, let X = 'x:, y = ' ..:, 2 = U:; U, V and Ware the displacements along the X-, y- and
z-directions, respectiveiy ; :t = a/ax, P= a/oy, ~2 = P(32/0/2; and p is the density of the
material. By eliminating plane stresses U.n uy and 'xy from the equilibrium, geometric and
constitutive equations, the following state equation can be obtained:

U 0 0 0 all 0 -ct U

V 0 0 0 0 a22 -p V

0 2 0 0 0 -ct -p ~2 Z
02 X ~2-C2a2-C6p2 -{C3+C6)ap C1ct 0 0 0 X

y -{C3+C6)ap ~2_C6ct2- C 4P2 CsP 0 0 0 y

W Clct CsP CIO 0 0 0 W
(I)

where

C I = -CdCn , C2 = CII-C~3/Cn, C3 = CI2-CI3C23/C3h

C4 = C22-C~3/C3h Cs = -C23/Cn , C6 = C66'

C IO = I/Cn , al I = I/Css , a22 = I/C44 •

CIh C12, C22, ... are coefficients of rigidity which satisfy the following equalities:

C I2 = EAJlyx+JlzxJlzxJlyz)/Q, C13 = EAJlzx+JlyxJlZy)/Q,

C23 = Ey{Jlzy +JlxyJlzx)/Q

Q = 1-JlxyJlyx - JlyzJlzy- JlzxJl.<z - 2JlxyJlyzJlzx

C44 = Gy:, C ss = Gzx , C66 = Gxy, ExJlyx = EyJlxy,

ExJlzx = EzJlzz, E.vJlzy = EzJlyz.

The subscripts of E and G are the Young's modulus and shear modulus at given directions.
Jlxy is Poisson's ratio which characterizes the contraction (expansion) in the direction ofthe
y-axis during tension (compression) in the direction of the x-axis, and so forth.

By simple calculations, the eliminated stress components can be written as

-CI]{U}.-Cs V

o Z
(2)

SIMPLY SUPPORTED RECTANGULAR PLATE

The boundary conditions in this case are (Fig. I):

Ux = V = W = 0 at x = 0, a

uy = U = W = 0 at y = 0, b.

For static problems (~ = 0), let

(3)
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Fig. l. Coordinate system and dimensions.

00 00

U = L L Umn(z) cos (m1txja) sin (n1tyjb)
m-III-I

00 00

V = L L Vmn(z) sin (m1txja) cos (n1tyjb)
m-In-l

00 00

W = L L Wmn(z) sin (m1txja) sin (n1tyjb).
m-I n-I

Substitution of eqn (4) into eqn (1) gives

x = LL Xmn(z) cos (m1txja) sin (mryjb)
m n

Y = LL Ymn(z) sin (m1txja) cos (mcyjb)
m n

Z = LLZmn(z) sin (m1txja) sin (n1tyjb).
m n

From eqn (2), we have

ax = LLax_(z) sin (m1txja) sin (n1tyjb)
m n

ay = LL ay_(z) sin (m1txja) sin (n1tyjb)
m n

'txy = LL 'tXy_(z) cos (m1txja) cos (mcyjb).
m n
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(4)

(5)

(6)

According to eqns (4) and (6), the boundary conditions (3) are satisfied.
Substitution of eqns (4) and (5) into eqn (1) gives the following expression for every

mandn:

d
dz [Umn(z) Vmn(z) Zmn(z) Xmn(z) Ymn(z) Wmn(z)]T =

[B:
n

A;;] [Umn(z) Vmn(z) Zmn(z) Xmn(z) Ymn(z) Wmn(zW (7)
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[a"
0 -'] [C"'+C'~' (C3+C6K" C,~]

Am" = ~ an -" , Bmn = (C3 +C6KI] C6(+C41]1 c."
I] 0 -C l ( -Cs" C lll

,= rn1C/a; " = n1C/b.

The solution for a set ofdifferential equations (7) of first order with constant coefficients
is

[Umn(z) Vmn(z) Zm,,(z) Xmn(z) Ym,,(z) Wm,,(zW =

exp {(B~" A;,,]} [Umn(O) Vm,,(O) Zm,,(O) Xm,,(O) Ym,,(O) Wm,,(OW (8)

where Umn(O), Vm,,(O), ... , Wm"(0) , which are called the initial values, are the values of
Um,,(z), Vmn(z), ... , Wmn(z) at z = O.

If l is the eigenvalue of the coefficient matrix in eqn (7), then ). must satisfy following
eigenequation

(9)

in which Ao, Boand Co can be determined from the coefficient matrix.
For simplicity, we assume that the A. (s = 1,2, ... ,6) are different and let A = Am",

B = Bm". By the Cayley-Hamilton theorem, we obtain

exp{{~ ~]} =

[

IXI (z)l+IX3(z)AB+IXs(z)ABAB iX2(Z)A +iX4(Z)ABA +iX6(Z)ABABA ]

iX2(Z)B+iX4(z)BAB+a6(z)BABAB iXl(z)I+ iX 3(Z)BA +iXs(z)BABA (10)

al(z) 1 ,1.1 Ai -s -,(·l... 1.1 e~':
a2(z) I ,1.2 A~ -s... 1'2 t!'2-

(11)=

IX6(Z) I A.6 '2 -s t!6=A,6 1'6

where I is a unit matrix. Substituting eqn (10) into eqn (8), we obtain all the physical
quantities across the thickness:

[Umn(z) Vm,,(z) Zmn(z)]T = [al (z)l+iX3(Z)AB+iXs(z)ABABJ[Um,,(0) Vmn(O) Zmn(O)]T

+ [a2(z)A +a4(z)ABA +iX6(Z)ABABA] [Xmn (0) Ym,,(O) Wmn(O)]T

[X"",(z) Ymn(z) W"",(Z)]T =[IX,(z)I+ IX 3(z)BA+as(z)BABA][Xmn(0) Ymn(O) JJ'mn(OW

+ [iX2(z)B+a4(z)BAB+a6(z)BABAB][Umn (O) Vmn(O) Zmn(OW. (12)

The initial values on the right-hand side ofthe above equation can be determined according
to the force vectors applied to the external plate planes (z = 0, h). For example, if the upper
surface of a plate is subjected to arbitrary normal loads q(x, y) and three concentrated
forces p along the X-, y- and z-directions, respectively, at a given point (x .. Y I), the boundary
conditions can be expressed by :
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:~ cos (m1txl/a) sin (n1tYdb)

:~ sin (m1txl/a) cos (n1tYI/b)

:~ sin (m1txda) sin (n1tYl/b) + a: La f: q(x,y) sin (m1tx/a) sin (n1ty/b) dxdy
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From eqn (11), one obtains

6 6

exs(Z) = L dSj exp (~z) = L dSj~(z)
j-l j-l

(13)

where [dsj] is the inverse matrix of the Vandermonde matrix in eqn (11). ~(z) = exp (A.jz).
After determining exs(z) and the initial values, Umn(z), Vmn(z), ... , Wmn(z) can be

obtained from eqn (12). Then, we arrive at O'x_(Z) , O'y_(z) and 'rXy_(z) from eqn (2).
Substitution of above values into eqns (4), (5) and (6) gives all the physical quantities.

NUMERICAL RESULTS

Example
A rectangular orthotropic thick plate with simply supported edges is subjected to

uniform loads qo on its upper surface (z = 0). Numerical calculations were performed with

Table 1. Variations of maximum displacement components across thickness

UEz/(qr/!) VEz/(qr/!) WEz/(qr/!)
z/h Theories x = 0, y = b/2 x = 0/2, y = 0 x = 0/2, y = b/2

0.0 Sundara 2.90269 4.37132 13.96010
0.2 Raja 1.40479 2.28731 13.94834
0.4 Iyengar 0.37976 0.52277 13.88676
0.6 and -0.47322 -1.09933 13.79994
0.8 Pandya -1.45498 -2.75600 13.68790
1.0 -2.86635 -4.62427 13.02603

0.0 2.93512 4.45923 13.87199
0.2 1.38440 2.48948 13.87199
0.4 0.39869 0.79882 13.87199
0.6 Ambartsumyan -0.39869 -0.79882 13.87199
0.8 -1.38440 -2.48948 13.87199
1.0 -2.93512 -4.45923 13.87199

0.0 2.48284 4.11641 13.57783
0.2 \.48971 2.46984 13.57783
0.4 0.49657 0.82428 13.57783
0.6 Reissner -0.49657 -0.82428 13.57783
0.8 -1.48971 -2.46984 13.57783
1.0 -2.48284 -4.1I641 13.57783

0.0 2.89730 4.24230 13.72005
0.2 1.34129 2.16232 13.68747
0.4 0.36579 0.50036 13.60981
0.6 Present study -0.45267 -1.04212 13.51160
0.8 -1.39751 -2.63049 13.39324
1.0 -2.80012 -4.42032 13.22745

$AS 2111-1
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Table 2. Variations of maximum stress components across thickness

tJJqo oJqo tJ"'q,, rn./qo r"lq" r,jqo
x = ai2. x = a/2. x = a 2. x = o. x=o. x = a;2.

=/h Theories y = bl2 y = bl2 y=b2 y=o y = b/2 y=o

0.0 Sundara -17.42338 -2.50500 3.96173 ooסס0.0 0.00000
0.2 Raja -9.07828 -1.50236 1.67037 2.32517 0.94468
0.4 Iyengar -2.80469 -0.52956 0.16293 3.29399 1.38776
0.6 and 2.74531 0.43772 -0.99050 3.29399 1.38776
0.8 Pandya 8.91966 1.42751 -2.21985 2.32517 0.94468
1.0 17.06627 2.44285 -3.95503 ooסס0.0 ooסס0.0

0.0 -17.18955 -2.35704 3.53957 ooסס0.0 ooסס0.0

0.2 -8.85563 -1.36533 1.57267 2.26008 0.93027
0.4 -2.70886 -0.44696 0.43243 3.39001 1.39540
0.6 Ambartsumyan 2.70886 0.44690 -0.43243 3.39001 1.39540
0.8 8.85563 1.36533 -1.57267 2.26008 0.93027
1.0 17.18955 2.35704 -3.53957 ooסס0.0 0.00000

0.0 -15.58077 -2.43819 2.68476 ooסס0.0 0.00000
0.2 -9.34846 -1.46292 1.61088 2.24965 0.94000
0.4 -3.11615 -0.48764 0.53696 3.37447 1.41000
0.6 Reissner

3.11615 0.48764 -0.53696 3.37447 1.41000
0.8 9.34846 1.46292 - 1.61088 2.24965 0.94000
1.0 15.58077 2.43819 -2.68476 ooסס0.0 ooסס0.0

0.0 -17.19845 -2.53812 -1.04284 2.90812 ooסס0.0 ooסס0.0

0.2 -8.89123 -1.49684 -0.90046 1.40428 2.53263 1.10795
0.4 -2.74270 -0.52559 -0.65114 0.31457 3.17441 1.34102
0.6 Present study 2.68282 0.43337 -0.35499 -0.63132 3.04427 1.23616
0.8 8.77416 1.40553 -0.10508 -1.64821 2.12289 0.81539
1.0 16.96432 2.41746 ooסס0.0 -2.96767 ooסס0.0 0.00000

the following values (Fig. I):

Ex = IOEy = tOEn Gxy = G.T: = 0.6E" Gy: =0.5E:

Il.TY = /lx: = Ily: = 0.25, a = b, h/a = 0.2.

The results can be found in Tables I and 2. All the calculations were carried out on a VAX­
11/780 with double precision whereby 15 terms in each of the x and y variables were retained
for each Fourier series (m, n = 1,3,5, ... ,29).
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